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Abstract
In this paper we derive general expressions for few-electron spectral functions
of the one-dimensional Hubbard model for values of the excitation energy in
the vicinity of the Mth upper-Hubbard band lower limit. Here M = 1, 2, . . .
is the rotated-electron double occupation, which vanishes for the ground state
and is a good quantum number for all values of the on-site Coulomb repulsion
U . Our studies rely on a combination of symmetries of the model with a
recent finite-energy holon and spinon description of the quantum problem.
We apply our general scheme to the one-electron addition spectral function,
dynamical structure factor and spin singlet Cooper-pair addition spectral
function. Our results provide physically interesting information about the
finite-energy spectral properties of the many-electron one-dimensional quantum
liquid.

1. Introduction

Recent experimental studies of quasi-one-dimensional (1D) materials observed unusual finite-
energy/frequency spectral properties, which are far from being well understood [1–5]. Several
of these experimental studies reveal the occurrence of charge–spin separation in terms of
independent holon and spinon excitation modes [2, 4–10]. For values of the excitation energy
larger than the transfer integrals associated with electron hopping between the chains, the
1D Hubbard model [11] is expected to provide a good description of the physics of these
materials [4, 5]. Unfortunately, an accurate determination of the spectral properties for finite
values of the excitation energy and of the Coulomb repulsion is, until now, still lacking. Most
accurate results correspond to the limit of infinite on-site Coulomb repulsion [12] where the
Bethe-ansatz [11] wavefunction is easier to handle, yet the solution of the problem remains
complex in this limit.

In this paper we combine the holon, spinon and pseudoparticle accurate description
recently introduced and studied in [6, 7] and the pseudofermion representation very recently
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introduced in [8] with symmetries of the 1D Hubbard model to derive general expressions
for few-electron spectral functions in the vicinity of the lower limit of the upper Hubbard
bands. For finite values of the excitation energy and on-site repulsion U there are not many
previous studies of few-electron spectral function weight distributions. The interesting studies
of the one-electron spectral functions presented in [12] refer to the limit of infinite U . There
are numerical studies of these functions for U ≈ 4t [13]. Moreover, the weight distribution
of the real part of the frequency-dependent optical conductivity in the vicinity of the optical
pseudogap was previously studied in [14, 15]. The very recent results presented in [10] refer to
the one-electron spectral-function weight distribution in the vicinity of singular branch lines.
Some of these lines cross the upper-Hubbard band lower-limit points considered in this paper.
However, our results are complementary to those presented in [10], which were obtained by
use of the method of [16]. Indeed, our weight-distribution expressions are valid when one
approaches these points along all finite-weight directions except those corresponding to the
above-mentioned singular branch lines. The values of the critical exponents which control the
weight distribution are different for these lines and for all the remaining directions of the (k, ω)
plane considered here.

We evaluate expressions for the critical exponents that control the weight distribution
of few-electron spectral functions for excitation energies corresponding to the vicinity of the
Mth upper-Hubbard band lower-limit points. (The method used in this paper is different from
that of [16], which was used in [10] in the study of the weight distribution in the vicinity of
the singular branch lines.) Our studies rely on a symmetry which is specific for the model
when defined in the reduced Hilbert subspace associated with the (k, ω)-plane region in the
vicinity of the above lower-limit points. Few-electron spectral functions can include several
upper-Hubbard bands, the Mth band being spanned by excited states of rotated-electron double
occupation M > 0. The lower-Hubbard band corresponds to the spectral-weight distribution
generated by excited states of rotated-electron double occupation M = 0. For one-electron
and two-electron spectral functions only the first few upper bands have a significant amount
of spectral weight [16]. Although our general expressions refer to the lower-limit points
of all upper-Hubbard bands, we apply our method only to the study of weight distributions
corresponding to upper bands with a significant amount of spectral weight. For the one-electron
addition spectral function and dynamical structure factor (and the spin singlet Cooper-pair
addition spectral function) only the M = 1 first Hubbard band has (and both the M = 1 first
and M = 2 second upper-Hubbard bands have) a significant amount of weight.

Our motivation in studying the finite-energy one-electron spectral function is that our
method provides the exponents of the singular spectral features beyond the branch lines
considered in [10]. The latter lines are observed in quasi-1D materials [9, 10]. Thus, the study
of other finite-energy singular spectral features is of interest for the further understanding of
the unusual spectral properties observed in these materials. Both for the dynamical structure
factor and other spectral functions we do not consider the low-energy features because those
can be investigated by standard two-component conformal-field theory. Our aim in studying
the Cooper-pair spectral function is to clarify whether there are singular spectral features at
the upper-Hubbard bands lower limit. Indeed, in the limit of small on-site repulsion and for
electronic densities very close to one, such singular features would appear at low energy and
could lead to a superconductivity instability in a system of weakly coupled Hubbard chains,
as further discussed in later sections.

The paper is organized as follows: in section 2 we summarize the 1D Hubbard model.
In section 3 we introduce the holon–spinon Hamiltonian and study the 1D Hubbard model
spectrum in the vicinity of the lower limit of the upper-Hubbard bands. In section 4 we use
the holon and spinon conservation laws and other symmetries of the model in the evaluation
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of general expressions for few-electron spectral functions. Moreover, we apply our method to
the study of the one-electron addition spectral function, dynamical structure factor and singlet
Cooper-pair addition spectral function. Finally, section 5 contains the concluding remarks.

2. The 1D Hubbard model

In a chemical potentialµ and magnetic field H the 1D Hubbard Hamiltonian can be written as

Ĥ = ĤSO(4) +
∑
α=c,s

µα Ŝαz ;

ĤSO(4) = −t
Na∑
j=1

∑
σ=↑,↓

[c†
j,σc j+1,σ + c†

j+1,σc j,σ ] + U
Na∑
j=1

[n̂ j,↑ − 1/2][n̂ j,↓ − 1/2],
(1)

where c†
j,σ and c j,σ are the spin σ electron creation and annihilation operators at site j ,

respectively. The operator n̂ j,σ = c†
j,σc j,σ counts the number of spin σ electrons at real-

space lattice site j = 1, . . . , Na . The number of lattice sites Na is even and large and Na/2
is odd. We consider periodic boundary conditions. Moreover, µc = 2µ, µs = 2µ0 H , µ0 is
the Bohr magneton and Ŝc

z = −(1/2)[Na − N̂ ] and Ŝs
z = −(1/2)[N̂↑ − N̂↓] are the diagonal

generators of theη-spin and spin SU(2) algebras [17], respectively. The operators N̂ = ∑
σ N̂σ

and N̂σ = ∑
j n̂ j,σ count the numbers of electrons and spin σ electrons, respectively. The

Hamiltonian ĤSO(4) defined in equation (1) commutes with the six generators of the η-spin and
spin algebras [17]. The Bethe-ansatz solvability of the 1D Hubbard model is restricted to the
Hilbert subspace spanned by the lowest-weight states (LWSs) of the η spin and spin algebras,
i.e. such that Sα = −Sαz [6] for α = c and s, respectively. Here Sc (and Ss) denotes the η-spin
(and spin) value. The momentum operator is

P̂ =
∑
σ=↑,↓

∑
k

N̂σ (k)k, (2)

where the spinσ momentum distribution operator is given by N̂σ(k) = c†
k,σ ck,σ and the operator

c†
k,σ (and ck,σ ) creates (and annihilates) a spin σ electron at momentum k. The momentum

operator (2) commutes with the Hamiltonians of equation (1).
There are N↑ spin-up electrons and N↓ spin-down electrons in the chain of Na sites, lattice

constant a and length L = [Naa] associated with the model (1). Throughout this paper we use
units of Planck constant 1 and of lattice spacing a = 1 and denote the electronic charge by −e.
The Fermi momenta are kFσ = πnσ and kF = ±[kF↑ + kF↓]/2 = πn/2, where nσ = Nσ /Na

and n = N/Na . The electronic density can be written as n = n↑ + n↓ and the spin density
is given by m = n↑ − n↓. In general we consider electronic densities n and spin densities m
in the domains 0 � n � 1 and 0 � m � n, respectively. Our general correlation-function
expressions are derived for the metallic phase of electronic densities 0 < n < 1 and spin
densities 0 < m < n. However, taking the limit n → 1 in some of these expressions leads
to correct expressions for the n = 1 Mott–Hubbard insulator phase. Also the m = 0 spectral
function expressions can, in general, be obtained by taking the limit m → 0 in our general
expressions. In our applications to the study of specific spectral functions we consider such
m = 0 expressions only.

The concept of rotated electron [6–8] is associated with a unitary transformation introduced
in [18]. For such rotated electrons, double occupation is a good quantum number for
all values of the on-site Coulombian repulsion U . The electrons that occur in the 1D
Hubbard model (1) are defined by c†

j,σ , while the rotated-electron operator c̃†
j,σ is given by
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c̃†
j,σ = V̂ †(U/t)c†

j,σ V̂ (U/t), where V̂ (U/t) is the electron–rotated-electron unitary operator
defined by equations (10)–(12) of [8]. As a result of the Hilbert-space electron–rotated-electron
unitary rotation, all energy eigenstates of the model are described in terms of occupancy
configurations of sc = 1/2 and σc = ±1/2 holons, ss = 1/2 and σs = ±1/2 spinons,
and c pseudoparticles [6]. Here we denoted the η-spin and spin projections of the quantum
objects by σc and σs , respectively, whereas their η-spin and spin values are denoted by sc

and ss , respectively. In this paper we call the holons and spinons according to their values
of σc = ±1/2 and σs = ±1/2, respectively. We denote by Mα,±1/2 the number of ±1/2
holons (α = c) or ±1/2 spinons (α = s). The value of the number of rotated-electron doubly
occupied and unoccupied sites (and spin-down and spin-up rotated-electron singly occupied
sites) equals that of the holon numbers Mc,−1/2 and Mc,+1/2 (and spinon numbers Ms,−1/2 and
Ms,+1/2), respectively. Thus, rotated-electron double occupation M is such that M = Mc,−1/2.
Moreover, Mα = Mα,+1/2 +Mα,−1/2 and Nc = Ms , where Nc is the number of c pseudoparticles.
The ±1/2 holons and c pseudoparticles carry charge ±2e and −e, respectively, whereas the
spinons have no charge degrees of freedom. The cν pseudoparticles (and sν pseudoparticles)
associated with Takahasi’s charge (and spin) ideal string excitations of lengthν [11, 6] areη-spin
singlet 2ν-holon (and spin singlet 2ν-spinon) composite quantum objects [6–8]. The ±1/2
holons (and ±1/2 spinons) which are not part of such 2ν-holon composite cν pseudoparticles
(and 2ν-spinon composite sν pseudoparticles) are called ±1/2 Yang holons (and ±1/2 HL
spinons) [6]. In the designations HL spinon and Yang holon, HL stands for Heilmann and
Lieb and Yang refers to C N Yang, respectively, who are the authors of the papers of [17]. We
denote by Nαν the number of composite αν pseudoparticles belonging to branches α = c, s
and ν = 1, 2, . . .. We call Lα,±1/2 the number of ±1/2 Yang holons (α = c) or ±1/2 HL
spinons (α = s). Note that Mα,±1/2 = Lα,±1/2 +

∑∞
ν=1 νNαν .

Below we are mostly interested in excited states without HL spinons and sνpseudoparticles
such that ν > 1. Therefore, for simplicity we often replace the pseudoparticle branch
index s1 by s. Thus, throughout this paper the notations s1 and s are equivalent. For the
subspaces spanned by the ground state and excited states generated from it by a finite number
of pseudoparticle and/or Yang holon processes, the c, s and c1 pseudoparticles carry band
momentum q such that |q| � q0

c = π , |q| � q0
s = kF and |q| � q0

c1 = [π − 2kF],
respectively. This refers to electronic densities 0 < n < 1 and spin density m = 0.
For these densities the ground state is such that there are no −1/2 Yang holons, the c1
and s pseudoparticle bands are empty and filled, respectively, and the c pseudoparticles
occupy 0 � |q| � q0

Fc = 2kF and thus leave 2kF < |q| � π empty [6, 7]. Following
the notation of [7], we call an electron ensemble space a Hilbert subspace spanned by all
states with fixed values for the N↑ and N↓ electron numbers. Furthermore, we call a CPHS
ensemble space, where CPHS stands for c pseudoparticle, −1/2 holon and −1/2 spinon,
a Hilbert subspace spanned by all states with fixed values for the numbers Nc , Mc,−1/2

and Ms,−1/2. A CPHS ensemble subspace is a Hilbert subspace spanned by all states with
fixed values for the numbers Nc, Lc,−1/2 and Ls,−1/2 and for the sets of numbers {Ncν}
and {Nsν} corresponding to ν = 1, 2, . . . branches. We note that one does not need to
provide the values of Mc,+1/2 and Ms,+1/2 in order to specify a CPHS ensemble space,
since these numbers are not independent [7]. Also the numbers Lc,+1/2 and Ls,+1/2 are not
independent and one does not need to provide these values in order to specify a CPHS ensemble
subspace.

Finally, let us introduce the useful quantum number ι = sgn(q)1 = ±1 which refers to
the number of right pseudoparticle movers (ι = +1) and left pseudoparticle movers (ι = −1).
The numbers Nc,ι of c pseudoparticles and Nαν,ι of αν pseudoparticles of ι character are good
quantum numbers. We thus introduce the c pseudoparticle and αν pseudoparticle current
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numbers:

Jc = 1
2

∑
ι=±1

(ι)Nc,ι; Jαν = 1
2

∑
ι=±1

(ι)Nαν,ι. (3)

The numbers Nc,ι and Nαν,ι can be expressed as Nc,ι = Nc/2 + ιJc and Nαν,ι = Nαν/2 + ιJαν .
Each CPHS ensemble Hilbert subspace characterized by fixed values for the sets of

numbers Nc, {Nαν } such that α = c, s and ν = 1, 2, 3, . . ., and {Lα,−1/2} such that α = c, s
contains different subspaces with different values for the sets of current numbers Jc and {Jαν}
such that α = c, s and ν = 1, 2, . . .. According to the notation of [8], we call these subspaces
J-CPHS ensemble subspaces.

3. The holon–spinon Hamiltonian and the upper-Hubbard band lower limit spectrum

The correlation function expressions are determined by transitions from the ground state to
excited states. Let us consider that the initial ground state belongs to a canonical ensemble
space associated with densities such that 0 < n < 1 and 0 < m < n. Often we consider such
ground states. In the application of our results to the evaluation of specific spectral function
expressions we are mostly interested in m = 0 initial ground states. Fortunately, we are able to
derive the corresponding m = 0 expressions from the general correlation function expressions
obtained for 0 < m < n. Let us introduce the Hamiltonians ĤGL and ĤHS such that

ĤGL = Ĥ − ĤHS;
ĤHS = 2µM̂c,−1/2 + 2µ0 H [M̂s,−1/2 − N̂s1] +

∞∑
ν=2

ε0
sν(0)N̂sν .

(4)

Here Ĥ is the 1D Hubbard model (1), ĤHS is the holon–spinon Hamiltonian and in ĤGL

the letters GL stand for gapless. Indeed, the energy spectrum of the Hamiltonian ĤGL of
equation (4) is gapless. Moreover, M̂α,−1/2 is the −1/2 holon (α = c) and −1/2 spinon
(α = s) number operator given in equations (24) and (25) of [8], N̂sν is the sν pseudoparticle
number operator and ε0

sν(q) is the sν pseudoparticle energy band defined in [6–8]. For m → 0
and ν > 1 this energy band is such that ε0

sν(q) = 0.
Since the numbers of −1/2 holons, −1/2 spinons and sν pseudoparticles are good

quantum numbers, the three Hamiltonians of equation (4) commute with each other. Thus, these
Hamiltonians have the same energy eigenstates, only the corresponding energy eigenvalues
being in general different. Let us consider an energy-E eigenstate of the 1D Hubbard model.
Such a state is also an energy eigenstate of the holon–spinon Hamiltonian ĤHS whose energy
eigenvalue ωHS is

ωHS = 2µMc,−1/2 + 2µ0 H [Ms,−1/2 − Ns1] +
∞∑
ν=2

ε0
sν(0)Nsν . (5)

It is also an energy eigenstate of the Hamiltonian ĤGL of equation (4) of eigenvalue EGL =
[E−ωHS]. Analysis of the finite-size corrections of the energy	EGL = [EGL−EGS] ≈ 0 of all
low-energy states of the Hamiltonian ĤGL reveals that the ground state of the 1D Hubbard model
is also the state of minimal energy	EGL = [EGL − EGS] = 0 for such a Hamiltonian. Indeed,
for all canonical ensemble spaces the latter Hamiltonian and the 1D Hubbard model (1) have the
same ground state. The general spectrum of interest for the problem of the few-electron spectral
functions of the 1D Hubbard model for excitation energies ω = [E − EGS] = ωHS + 	EGL

such that	EGL = [EGL − EGS] is small can be written as the sum of the finite energyωHS plus
the gapless contribution 	EGL expressed in terms of the pseudoparticle energy bands [7, 8].
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This gapless contribution is the excitation energy of the same states relative to the Hamiltonian
ĤGL of equation (4).

The ground-state normal-ordered expression of an operator Ô is defined as :Ô : ≡
Ô − 〈GS|Ô|GS〉, where |GS〉 is the ground state. Let |ex〉 be any excited state. The
corresponding deviation 	O is defined as 	O ≡ 〈ex|Ô|ex〉 − 〈GS|Ô|GS〉. From now on
we will deal mostly with the two Hamiltonians (1) and ĤGL of equation (4) while acting in
the reduced Hilbert subspaces spanned by excited states with small excitation energy 	EGL

for the Hamiltonian ĤGL. Thus, it is useful to introduce the ground-state normal-ordered
Hamiltonians :ĤGL: and :Ĥ : such that

:ĤGL: = :Ĥ : − ĤHS, (6)

where Ĥ is the 1D Hubbard model (1). (Note that, since the energy eigenvalue ωHS (5) of the
holon–spinon Hamiltonian ĤHS vanishes for the ground state, its ground-state normal-ordered
expression is such that :ĤHS: = ĤHS.) While the Hamiltonian :ĤGL: of equation (6) describes
the gapless part of the excitations, the holon–spinon Hamiltonian ĤHS of equations (4) and (6)
controls the finite-energy physics. Creation of a −1/2 holon requires a minimal amount
of excitation energy 2µ. Creation of a −1/2 spinon (except those which are part of s1
pseudoparticles) requires a minimal amount of excitation energy 2µ0 H . Creation of a sν
pseudoparticle of bare momentum q and belonging to a ν > 1 branch involves creation of
ν − 1/2 spinons and is associated with an energy given by 2νµ0 H + ε0

sν(q). Creation of
a cν pseudoparticle of bare momentum q involves creation of ν − 1/2 holons and requires
an amount of energy 2νµ + ε0

cν(q). (The pseudoparticle energy bands ε0
sν(q) and ε0

cν(q) are
studied in [6, 7].)

Although our expressions refer to general values of spin density m such that 0 < m < n,
in the case of applications to few-electron spectral functions we are most interested in zero
magnetization. Thus, for simplicity we consider excited states without −1/2 HL spinons and
without sν pseudoparticles belonging to ν > 1 branches. We emphasize that finite-energy
states with finite occupancies for these quantum objects play an important role only for finite
values of the spin density. One arrives at the same final m = 0 expressions from our general
0 < m < n scheme regardless of whether we consider excited states with or without −1/2 HL
spinons and sν pseudoparticles belonging to ν > 1 branches.

For m → 0 initial ground states only excited states with finite −1/2 holon occupancies
have a gapped energy spectrum. These states have a minimal finite excitation energy given by

ωHS = Eu Mc,−1/2 = Eu

[
Lc,−1/2 +

∞∑
ν=1

νNcν

]
. (7)

Here the energy Eu ≡ 2µ is defined by equation (107) of [8]. In the limit m → 0 and for
0 � n � 1 it is an increasing function of the on-site repulsion U such that Eu = 4t cos(πn/2)
for U/t → 0 and Eu = U + 4t cos(πn) for U/t → ∞. For any value of U/t it is a
decreasing function of the electronic density n such that Eu = U + 4t as n → 0 and Eu

approaches the value of the Mott–Hubbard gap EMH as n → 1. For values of rotated-electron
double occupation M such that M > 0, the energy ωHS = M Eu of equation (7) is finite and
corresponds to the lower limit of the Mth upper Hubbard band.

Transitions from a ground state to excited states belonging to a given J-CPHS ensemble
subspace can be labelled by the set of deviation numbers and deviation current numbers {	Nα},
{	Jα}, {	Ncν} = {Ncν}, {	Jcν} = {Jcν} and {	Lc,−1/2} = {Lc,−1/2}, where α = c, s and
ν = 1, 2, . . .. Since there are no cν pseudoparticles and −1/2 Yang holons in the ground state,
we replace below the deviations	Ncν , 	Jcν and 	Lc,−1/2 by the corresponding number and
current number values Ncν , Jcν and Lc,−1/2, respectively. All states belonging to the same
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J-CPHS ensemble subspace have the same number of −1/2 holons and thus the same energy
eigenvalue ωHS = M Eu relative to the holon–spinon Hamiltonian ĤHS of equation (4). We
are mostly interested in the reduced J-CPHS ensemble subspaces. Such subspaces are the part
of the general J-CPHS ensemble subspaces which is spanned by states of excitation energy
ω (relative to the 1D Hubbard model) such that 	EGL = (ω − M Eu) is small. Transitions
from a ground state to these states correspond to transitions to the lower limit of the Mth
upper-Hubbard band. Importantly, the cν pseudoparticle creation processes which generate
the Mc,−1/2 = M = 1, 2, . . . excited states of vanishing energy 	EGL ≈ 0 and M > 0
excitation energy 	E = ω ≈ M Eu for the 1D Hubbard model involve cν pseudoparticles
of bare-momentum value q ≈ ±q0

cν = ±[π − 2kF] only. In addition, these states can
involve −1/2 Yang holon creation and low-energy c and s pseudoparticle creation and/or
annihilation and particle–hole pseudoparticle processes in the vicinity of the corresponding
c and s pseudoparticle Fermi points. Moreover, since we are considering final states with
no −1/2 HL spinons and no sν pseudoparticles belonging to ν > 1 branches, the number
deviations and numbers 	Nc, 	Ns , Lc,−1/2 and {Ncν } where ν = 1, 2, . . . obey the sum
rules (51) and (52) of [7] with 	Ls,−1/2 = 0 and 	Nsν = 0 for ν > 1. (In that reference Nsν

is denoted by Ns,ν .)
When defined in a reduced J-CPHS ensemble subspace, the momentum operator (2) can

be written in normal order relative to the ground state as follows:

:P̂ : = P̂0 + :P̂GL:;
P̂0 =

∑
α=c,s

q0
Fα2: Ĵα: +

∞∑
ν=1

2kF2 Ĵcν + π M̂c,−1/2 .
(8)

Here P̂0 is the momentum associated with the holon–spinon Hamiltonian ĤHS of equation (4).
Moreover, the ground-state normal-ordered operator :P̂GL: of equation (8) is the momentum
operator associated with the Hamiltonian :ĤGL: of equation (6) and is

:P̂GL: = 2π

Na

∑
α=c,s

:N̂α :

[
: Ĵα: − δα,c

∞∑
ν=1

Ĵcν

]
+ P̂ph;

P̂ph = 2π

Na

∑
α=c,s

∑
ι=±1

ιN̂ph
α,ι.

(9)

The operator P̂ph is such that N̂ph
α,ι counts the number Nph

α,ι of momentum ι[2π/Na] elementary
particle–hole pseudoparticle processes around the α = c and α = s Fermi points ιq0

Fc = ι2kF

and ιq0
Fs = ιkF↓, respectively.

The momentum operators involved in equation (8) commute with each other and with the
three Hamiltonians appearing in equation (6). Thus, the energy eigenstates are also eigenstates
of the latter momentum operators. The corresponding momentum eigenvalues are such that

	P = kl
M +	PGL; kl

M =
∑
α=c,s

q0
Fα2	Jα +

∞∑
ν=1

2kF2Jcν + πMc,−1/2. (10)

The index l labels the different momentum values kl
M occurring for the same value of

rotated-electron double occupation M , as illustrated in the applications provided below. The
momentum	PGL of equation (10) is

	PGL = 2π

Na

[
	Nc

[
	Jc −

∞∑
ν=1

Jcν

]
+	Ns	Js +

∑
ι=±1

∑
α=c,s

ιNph
α,ι

]
. (11)
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The current number deviations	Jc,	Js and Jcν = 	Jcν of equations (10) and (11) are given
by

	Jc =
(
	Nc +	Ns +

∑∞
ν=1 Ncν

2

)
mod 1; 	Js =

(
	Nc

2

)
mod 1;

Jcν = 1
2

∑
ι=±1

ιNcν,ι . (12)

The momentum values kl
M defined in equation (10) play the same role for the J-CPHS

ensemble subspaces as the energies ωHS = M Eu for the CPHS ensemble spaces. While the
straight horizontal line (k, ω = M Eu) defines the lower limit of the Mth upper Hubbard
band, the points (k = kl

M , ω = M Eu) of the same line define the edges of the Mth upper
Hubbard band, as further discussed in section 4. We call Hred the reduced J-CPHS ensemble
subspaces spanned by states of momentum k and excitation energy ω such that (k − kl

M) and
(ω − M Eu) are small. These subspaces are characterized both by specific values for the set
of deviation numbers and numbers {	Nα}, {Ncν}, {	Jα}, {Jcν} and {Lc,−1/2} where α = c, s
and ν = 1, 2, . . . and by small values for (k − kl

M) and (ω − M Eu).
It is useful for our studies to find the specific form of the general energy spectrum	EGL

of the Hamiltonian :ĤGL: of equation (6) for the excited states which span a reduced subspace
Hred. That energy spectrum can be expressed in terms of a phase-shift momentum functional
associated with pseudofermions introduced in [8]. According to the results of that reference,
there is a canonical transformation that maps α pseudoparticles and cν pseudoparticles
onto α pseudofermions and cν pseudofermions, respectively. While the α pseudoparticles
and cν pseudoparticles carry bare-momentum q , the α pseudofermions carry momentum
q̄ = q + Qα(q)/Na and the cν pseudofermions carry momentum q̄ = q + Qcν(q)/Na . The
functionals Qα(q) and Qcν(q) are defined in equation (73) of [8]. After some algebra one
finds that for the above states 	EGL has the following leading-order 1/Na finite-size energy
terms:

	EGL = 2π

Na

∑
α=c,s

∑
ι=±1

vα[	ι
α + Nph

α,ι] + O

(
1

Na

)
. (13)

Here vα stands for the light group velocity vα ≡ vα(q0
Fα) where vα(q) = ∂εα(q)/∂q for α = c

and s. Moreover, Nph
α,ι = 0, 1, 2, . . . is the number of elementary particle–hole pseudoparticle

processes around the ι = ±1 Fermi points of the c and s pseudoparticle bands and 2	ι
α stands

for the following functional:

2	ι
α =

[
Na

2π

(
	q0

Fα,ι +
Qα(q0

Fα,ι)

Na

)]2

; α = c, s; ι = ±1, (14)

where Qα(q)/Na is the above α pseudofermion momentum functional. Note that, since
q̄ = q + Qα(q)/Na , the functional (14) is proportional to the square of the α pseudofermion
Fermi momentum deviation	q̄0

Fα,ι = 	q0
Fα,ι+ Qα(q0

Fα,ι)/Na . In appendix A it is found that for
the excited states that span the reduced J-CPHS ensemble subspaces Hred the functional (14)
can be written as

2	ι
α =

[
ι

∑
α′=c,s

ξ0
α,α′

	Nα′

2
+ ξ1

α,c

[
	Jc −

∞∑
ν=1

Jcν

]
+ ξ1

α,s	Js

]2

. (15)

Here the parameters ξ j
α,α′ are defined by equation (A.2) of appendix A.

A property with a deep physical meaning is that the finite-size energy spectrum of the
cν pseudoparticles vanishes as the limit q → ±q0

cν = ±[π − 2kF] is approached. In that
limit the cν pseudoparticles become localized and non-interacting objects, as found in [7] and
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discussed in appendix A. In contrast, creation of cν pseudoparticles at other bare-momentum
values leads to finite-size cν energy corrections and to values of excitation energy ω such that
	EGL = (ω− M Eu) is finite. In that case the finite-energy problem cannot be mapped onto a
low-energy conformal-field theory and our method does not apply. Behind this vanishing of the
finite-size cν energy spectrum there is a symmetry which imposes that the ν-−1/2 Yang holon
and cν pseudoparticle energy and momentum spectra become the same as q → ±[π − 2kF]
for one of the bare-momentum values −[π − 2kF] or +[π − 2kF]. Creation of ν − 1/2 Yang
holons contributes to the 1D Hubbard model energy spectrum ω = ωHS +	EGL through the
finite-energy term ωHS = M Eu of equation (7) by an energy amount νEu , but does not lead to
any contribution to the gapless spectrum	EGL (13) and thus to the value of the functional (15).
Therefore, an excitation involving cand s pseudoparticle processes and creation of ν−1/2 Yang
holons leads to an energy spectrum of the form (13), whose functional 2	ι

α is given by (15)
with 	Jc − ∑∞

ν=1 Jcν replaced by 	Jc. Except for this difference, the cν pseudoparticle and
ν-−1/2 holon contributions to the energy spectrum ω = ωHS +	EGL and functional (15) are
the same. However, the role of the c pseudoparticle current number deviation shift − ∑∞

ν=1 Jcν

is to introduce a counterterm whose presence ensures that two M > 0 finite-energy excited
states with the same c and s pseudoparticle occupancies and either one cν pseudoparticle such
that ν = M or M − 1/2 Yang holons, respectively, have the same momentum and energy
spectrum. The same holds for general M > 0 excited states such that M = ∑∞

ν Ncν + Lc,−1/2.
For simplicity, let us consider that M = 1. In this case the current − ∑∞

ν=1 Jcν is −Jc1 = ∓1/2
and zero for creation of a c1 pseudoparticle and a −1/2 Yang holon, respectively. According
to equation (12), for states with the same c and s pseudoparticle number deviations the value
of the c current number deviation 	Jc for the one-c1 pseudoparticle states differs from the
corresponding number of the one-−1/2 Yang holon states by ±1/2. Thus, for one of the two
possible values of opposite sign of the current number −Jc1 = ∓1/2 such a difference is
precisely cancelled. For that one-c1 pseudoparticle state the current number	Jc − Jc1 equals
the current number	Jc of the one-−1/2 Yang holon state.

4. Spectral function expressions in the vicinity of the upper-Hubbard band lower limits

In this section we derive general finite-energy expressions for few-electron spectral functions
for excitation energy and momentum values in the vicinity of the upper-Hubbard band lower
limits. Moreover, we apply these general expressions to the study of specific one-electron and
two-electron functions.

4.1. The general finite-energy spectral function expressions

Although for M Eu > 0 the energy spectrum ω = M Eu + 	EGL of the 1D Hubbard model
in the reduced subspace Hred refers to a finite-energy problem, the functionals 2	ι

c and 2	ι
s

appearing in equation (13) equal the c and s primary-field dimensions of a low-energy two-
component conformal-field theory [19, 20]. We note that the momentum spectrum (11)
can be expressed in terms of these functionals as 	PGL = 2π

Na

∑
α=c,s

∑
ι=±1 ι[	

ι
α + Nph

α,ι].

Furthermore, manipulation of the integral equations that define the phase shifts of the ξ1
α,α′ and

ξ0
α,α′ expressions given in equation (A.2) of appendix A reveals that those are entries of known

matrices. The two corresponding matrices are the transpose of the dressed charge matrix and
the inverse of the transpose of the dressed charge matrix, respectively, of the low-energy 1D
Hubbard-model conformal field theory [19, 20]. This property allows the evaluation of the 1D
Hubbard-model few-electron spectral function expressions for momentum k and excitation
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energy ω such that both (k − kl
M) and (ω − M Eu) are small. For M Eu > 0 such a 1D

Hubbard-model finite-energy problem cannot be solved by standard low-energy conformal
field theory.

Let φ̂ϑ(x, t) (and φ̂GL
ϑ (x, t)) represent a one-electron or two-electron physical field and

ϑ = 1 p, ρ, ss refer, for example, to one-electron, charge and singlet superconductivity,
respectively. The time evolution of φ̂ϑ (x, t) (and φ̂GL

ϑ (x, t)) is described by the 1D Hubbard
Hamiltonian :Ĥ : (and Hamiltonian :ĤGL: of equation (6)). The space translations are described
by the momentum operator :P̂ : of equation (8) (and :P̂GL: of equation (9)). The asymptotic
expression for the low-energy correlation function of the physical field φ̂GL

ϑ (x, t) can be
obtained by use of conformal-field theory. Such an expression, combined with the relation
between the three Hamiltonians of equation (6) and their symmetries, is used in appendix B
to show that the leading term in the asymptotic expansion of the corresponding finite-energy
correlation function of the 1D Hubbard model is of the following form:

χϑ(x, t) = 〈GS|φ̂ϑ(x, t)φ̂ϑ (0, 0)|GS〉 ∝
∏
α=c,s

∏
ι=±1

e−i[kl
M x−M Eu t]

(x − ιvαt)2	ι
α

. (16)

Here 	ι
α is the functional defined in equation (15) and vα stands for the light group velocity

vα ≡ vα(q0
Fα). Comparison with the low-energy correlation-function expression (B.2) of

appendix B for φ̂GL
ϑ (x, t) reveals that there is, in expression (16), an extra phase factor

e−i[kl
M x−M Eu t]. In spite of that, for values of the momentum k and excitation energy ω such

that both (k − kl
M) and (ω − M Eu) are small the asymptotic of the finite-energy correlation

function is of an algebraic type. The non-interacting character of the −1/2 Yang holons and
c1 pseudoparticles as the limit q → ±q0

cν = ±[π − 2kF] is approached justifies that the
creation of such objects is a finite-energy process that leads to the phase factor e−i[kl

M x−M Eu t]

of expression (16) only.
In order to derive the expressions of the few-electron spectral functions one needs the

imaginary part of the correlation functions in the k and ω plane. Let χϑ(k, ω) be the Fourier
transform of the functionχϑ(x, t) given in equation (16). Theχϑ(k, ω) expression is controlled
by the same universal exponent when one approaches the point (k = kl

M , ω = M Eu) from
all directions (k → kl

M , ω → M Eu) in the finite spectral-weight region corresponding to the
reduced subspace Hred, except for the four lines such that (ω− M Eu) ≈ ±vα(k − kl

M). (Two
lines for each α = c, s pseudoparticle branch—in some cases only two of these four lines are
inside the finite spectral-weight region.) These lines are associated with the slope at the point
(k = kl

M , ω = M Eu) of the general α branch lines studied for few-electron spectral functions
in [10, 16]. In the vicinity of these lines the ω dependence of the weight distribution is also
in general of power-law type but is controlled by exponents different from that given below.
Thus, our studies are complementary to those of [10, 16]. For simplicity, we consider that the
critical point is approached through the line defined by k = kl

M and ω → M Eu . In this case
we find the following expressions for χϑ(k, ω):

Im χϑ(k
l
M , ω) ∝ (ω − M Eu)

ζϑ , (17)

and

Re χϑ(kl
M, ω) ∝ (ω − M Eu)

ζϑ ; ζϑ �= 0,

∝ − ln(ω − M Eu); ζϑ = 0, (18)

where the exponent is

ζϑ = −2 +
∑
α=c,s

∑
ι=±1

2	ι
α, (19)
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and the functional 2	ι
α is given in equation (15). Expression (17) corresponds to the leading

term of an expansion in the small energy (ω− M Eu). The exponent ζϑ is a rapidly increasing
function of the number of excited pseudoparticles. The non-interacting character of the −1/2
Yang holons and q = ±q0

cνcν pseudoparticles justifies that for m → 0 the U/t and n
dependence of the exponent (19) occurs through the parameter Kρ of [22] only, as confirmed by
the exponent expressions found below. (This is not in general true for the branch-line exponents
of [10, 16], whose expressions involve the momentum-dependent phase shifts defined in [8].)
Importantly, when for one-electron (and two-electron) correlation functions the exponent ζϑ
tends to −1 (and −2) as U/t → 0 or U/t → ∞, expression (17) is not valid. In this limit the
correlation-function expression is such that

χϑ(k
l
M , ω) ∝ 1

ω − M Eu − iβ
; Im χϑ(±kl

M, ω) ∝ δ(ω − M Eu), (20)

where β is real and infinitesimal and thus the spectral function Im χϑ(±kl
M , ω) is δ-function-

like.
For simplicity, the general expression (17) refers to the vertical line corresponding to

k = kl
M and small values of (ω− M Eu), yet the exponent (19) controls the weight distribution

for all other lines crossing the point (k = kl
M , ω = M Eu) except for the α branch lines. Thus,

although in our applications to the one-electron addition spectral function, dynamical structure
factor and singlet Cooper-pair addition spectral function we use the k = kl

M expression (17), we
emphasize that similar expressions apply to the weight distribution associated with momentum
values k and excitation energy ω such that (k − kl

M) and (ω − M Eu) are small.
Except in particular limits of parameter space, our present method does not provide the

values of the constants that multiply the weight-distribution power-law expressions. This
justifies the use of the proportionality symbol ∝ in the general expression (17). Fortunately,
there is a relation between the value of the critical exponents that control the weight distributions
in the vicinity of the different upper-Hubbard band lower-limit points and the relative value
of the corresponding power-law multiplicative constants. In general, the smaller is the critical
exponent, the larger is the value of the corresponding multiplicative constant. Such a relation is
confirmed by analysis of the results obtained for U/t → ∞ by the method of [12]. The finite-
U/t numerical results of [13] and the small U/t results of [15] also confirm that relation.
Moreover, often the form of the weight distributions at U/t = 0 also provides an useful
boundary condition. Thus, our considerations for finite values of U/t concerning the relative
amount of spectral weight located in the vicinity of the different upper-Hubbard band lower-
limit points result from comparison with the known limiting results, including those given in
the above references.

For M Eu = 0 our correlation-function expressions reduce to the well known conformal-
field general expressions [19]. However, for M Eu > 0 our expressions provide new useful
information about the finite-energy spectral properties of the 1D Hubbard model.

4.2. Introduction to the few-electron finite-energy problem

All our applications refer to positive excitation energy ω. In this case the general correlation
function χϑ(k, ω) can be written in terms of a Lehmann representation as follows:

χϑ(k, ω) =
∑

j

|〈 j |Ôϑ(k)|GS〉|2
ω − ω j,0 − iβ

, (21)

where β → 0 and the operator Ôϑ(k) is the Fourier transform of the general one-electron
or two-electron physical field φ̂ϑ(x, 0) of equation (B.3) of appendix B. The j summations
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run now over all available final excited energy eigenstates and ω j,0 = [Ei − EGS] are the
Hubbard-model excitation energies relative to the initial ground state.

In our applications of the general spectral-function expressions we consider the following
operators Ôϑ(k): the spin-up one-electron addition operator, the charge operator and the
singlet-superconductivity Cooper-pair addition operator:

Ô1p(k) = c†
k,↑; Ôρ(k) =

∑
k′

∑
σ=↓,↑

c†
k′,σ ck+k′ ,σ ;

Ôss(k) =
∑

k′
c†

k′ ,↓c†
k−k′ ,↑.

(22)

As above, here we use the notations ϑ = 1 p for one-electron, ϑ = ρ for charge and ϑ = ss
for s-wave singlet superconductivity. We are particularly interested in the spectral functions
associated with the imaginary part of the correlation function (21):

Im χϑ(k, ω) = π
∑

j

|〈 j |Ôϑ(k)|GS〉|2δ(ω − ω j,0); ϑ = 1 p, ρ, ss. (23)

We consider the case of ground states of spin density m → 0. In this case the energy
ωHS = M Eu given in equation (7) defines the lower limit of the Mth upper-Hubbard
band. Often the momentum values kl

M given in equation (10) and associated with the
Mth upper-Hubbard band are such that kl

M = [π − lk0] where k0 is a spectral-function-
dependent momentum. In our applications we consider Hubbard bands generated by dominant
processes only. According to the results of [16], for the spin-up one-electron addition
operator Ô1p(k) = c†

k,↑ and charge operator Ôρ(k) = ∑
k′

∑
σ=↓,↑ c†

k′ ,σ ck+k′ ,σ (and singlet-

superconductivity operator Ôss(k) = ∑
k′ c†

k′,↓c†
k−k′ ,↑) more than 99% of the spectral weight

corresponds to excited states such that Mc,−1/2 = M = 0, 1 (and Mc,−1/2 = M = 0, 1, 2).
States with Mc,−1/2 = M > 1 (and Mc,−1/2 = M > 2) lead to nearly no spectral weight
and are omitted below. For electron addition and the dynamical structure factor we study the
weight distribution for domains of the (k, ω)-plane corresponding to small values of (k − kl

1)

and (ω − Eu) just above the lower limit of the first upper-Hubbard band. For the regions
corresponding to other momentum values and small energy (ω− Eu) these spectral functions
vanish because there is no spectral weight. In the case of the singlet Cooper-pair spectral
function we study the weight distribution both for domains of the (k, ω)-plane corresponding
to small values of (k − kl

1) and (ω− Eu) just above the lower limit of the first upper Hubbard
band and (k − kl

2) and (ω−2Eu) just above the lower limit of the second upper Hubbard band.
From analysis of the energy spectrum of the excited states generated by dominant

processes, one finds that the Mth Hubbard band finite-spectral-weight region of the (k, ω)-
plane, whose lower limit is located at the line ω = M Eu , is for all values of k separated from
the next lower-limit lineω = [M +1]Eu of the [M +1]th Hubbard band by a region with nearly
no spectral weight. The latter region of the (k, ω)-plane is out of the range of the excitations
generated by dominant processes. This holds for all few-electron spectral functions and is
illustrated in figure 1 for the specific case of the one-electron spectral function. For on-site
repulsion U = 4t , electronic density n = 1/2 and spin density m = 0 the regions of the
(k, ω)-plane whose spectral weight is generated by dominant processes are shown in the figure
by shaded areas. The dominant processes also include pseudoparticle particle–hole processes
which lead to spectral weight both inside and outside,but still in the close vicinity of, the shaded
domains of figure 1. In that figure an extended momentum scheme centred at momentum k = 0
(and k = π) is used for electron removal and the M = 0 lower Hubbard band (and M = 1
first upper Hubbard band). The one-electron addition upper- and lower-Hubbard band spectral
functions correspond to values of excitation energy such that ω > Eu and ω > 0, respectively.
Note that for all values of k there is indeed a region with nearly no spectral weight located
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Figure 1. Regions of the (k, ω)-plane where, according to the restrictions associated with the
dominant holon and spinon microscopic processes studied in [16], there is a significant amount of
one-electron spectral weight for on-site repulsion U = 4t , electronic density n = 1/2 and spin
density m = 0. Note that an extended momentum scheme is used. The one-electron addition
upper- and lower-Hubbard band spectral functions correspond to values of excitation energy such
that ω > Eu and 0 < ω < Eu , respectively.

(Some figures in this article are in colour only in the electronic version)

between the finite-weight regions corresponding to the M = 0 and 1 Hubbard bands. In the
figure the one-electron removal spectral function corresponds to ω < 0. The figure shows the
locations (k = π − lkF, ω = Eu) for the four l = ±1,±3 upper-Hubbard band lower-limit
points whose weight distribution is studied below. There are also two upper-Hubbard band
lower-limit points for l = ±5 which are not shown in the figure.

As in the case of the one-electron spectral weight represented in the figure, it occurs
for all few-electron spectral functions that in the straight and horizontal lower-limit upper-
Hubbard band lines (k, ω = M Eu) of the (k, ω)-plane there is a finite spectral weight for a
set of discrete momentum values only, as mentioned above. These discrete momentum values
coincide with the momenta kl

M given in equation (10). The four momenta k = π − lkF where
l = ±1,±3 that are shown in figure 1 are examples of such momentum values. Each of
these momentum values corresponds to a different reduced J-CPHS ensemble subspace of the
CPHS ensemble space spanned by states of rotated electron double occupation M and with
an occupancy of M = Mc,−1/2−1/2 holons. Our scheme provides the weight distribution
for small energies (ω − M Eu) corresponding to regions of the (k, ω)-plane just above such
straight and horizontal lower-limit upper-Hubbard band lines. For the straight and horizontal
lines parallel to the lower-limit lines and corresponding to values of ω such that (ω − M Eu)

is small, there is a finite spectral weight for small momentum domains centred around the set
of momentum values k = kl

M .
The correlation-function expressions obtained from standard conformal-field the-

ory [19, 20] correspond to a specific limit of our scheme such that M = 0. The corresponding
low-energy edges result from ground-state transitions to Mc,−1/2 = M = 0 excited states.
In figure 1 this corresponds to the finite-weight regions in the vicinity of the three points
(k = kF, ω = 0), (k = 3kF, ω = 0) and (k = 5kF, ω = 0). In the following applications of our
finite-energy method we do not consider weight distributions resulting from such low-energy
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transitions, which can be evaluated by means of two-component conformal-field theory [20].
Our studies are restricted to the weight distribution of each of the above spectral functions in
the vicinity of finite-energy points associated with the creation of −1/2 Yang holons and/or
cν pseudoparticles of bare momentum q ≈ ±q0

cν = ±[π − 2kF]. The weight distributions re-
sulting from the creation of cν pseudoparticles at other bare-momentum values appear at finite
energy ω such that (ω− ωHS) is finite. These weight distributions cannot be evaluated by our
method and are studied elsewhere [9, 10, 16]. Below we find that several critical exponents
which control the weight distribution in the vicinity of the first and second upper-Hubbard
band lower-limit points equal the corresponding exponents that control the low-energy weight
distributions studied in [20]. However, we note that the figures that reference these exponents
were plotted for finite values of the magnetic field whereas our study refers to zero field and
magnetization.

Transitions from the ground state to excited states belonging to the same J-CPHS ensemble
subspace are of the same type, whereas transitions of different type refer to excited states
belonging to different J-CPHS ensemble subspaces. In some cases we extend this concept to
pairs of J-CPHS ensemble subspaces with the same absolute momentum value for kl

M .

4.3. One-electron addition upper-Hubbard band weight distribution

We start by considering addition of a spin-up electron. According to equation (12) and
equations (51) and (52) of [7] with 	Ls,−1/2 = 0 and 	Nsν = 0 for ν > 1, in the case of the
Mc,−1/2 = M = 1 type of transitions one has that	Nc = 	Ns = −1 and	Js = ±1/2. There
are two one-−1/2 Yang holon types of transitions and six one-q = ±q0

c1 = ±[π − 2kF] c1
pseudoparticle types of transitions. For m → 0 the number of momentum values k = kl

1
associated with dominant processes such that ω = Eu is, in the present case, six. These
momentum values are π − lkF where l = ±1,±3,±5. Indeed, two one-−1/2 Yang holon
types of transitions and two of the six one-q = ±q0

c1 = ±[π − 2kF]c1 pseudoparticle
types of transitions have the same momentum and energy spectrum. Thus, they contribute
to the same upper-Hubbard band lower-limit weight distribution located around the points
(k = π ∓ kF, ω = Eu). These are the two one-−1/2 Yang holon types of transitions such that
Lc,−1/2 = 1, 	Jc = 0 and 	Js = ±1/2 and the two one-q = ±q0

cν = ±[π − 2kF] c1
pseudoparticle types of transitions such that Nc1 = 1, 	Jc = ±1/2, Jc1 = ±1/2 and
	Js = ±1/2. Two other upper-Hubbard band lower-limit points are (k = π ∓ 3kF, ω = Eu).
The corresponding spectral weight is generated by types of transitions such that Nc1 = 1,
	Jc = ±1/2, Jc1 = ∓1/2 and 	Js = ∓1/2. Below we also study the weight distribution in
the vicinity of these points. In their vicinity there is a smaller amount of spectral weight
than in the vicinity of the above two former points. Finally, the weight located in the
vicinity of the remaining two points is even smaller. It is generated by transitions such that
Nc1 = 1, 	Jc = ±1/2, Jc1 = ∓1/2 and 	Js = ±1/2. These two points are located
at (k = π ∓ 5kF, ω = Eu). In the following we study the weight distribution around the
above six upper-Hubbard band lower-limit points located at (k = π − lkF, ω = Eu) where
l = ±1,±3,±5.

Let us consider the limit m → 0 where the spin-up and spin-down one-electron spectral
functions have the same form. Use of the general expression (17) leads for excitation energy
ω just above Eu and momentum values k = π − lkF where l = ±1,±3,±5 to

Im χ1p(π − lkF, ω) ∝ (ω − Eu)
ζ

|l|
1 p; l = ±1,±3,±5. (24)

In this case the general exponent (19) is given by

ζ
|l|
1p = − 3

2 + 1
2

[[
1/

√
2Kρ

]2
+

[
l
√

2Kρ/2
]2]; l = ±1,±3,±5. (25)
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To reach this result we first evaluated the expression for general values of m in terms of
the parameters (A.2) of appendix A. Use of the limiting values for these parameters given
in the same appendix then leads to expression (25). The same procedure is followed in the
calculation of the m → 0 weight distribution of the dynamical structure factor and singlet
Cooper-pair spectral function given below. Note that in the present case all the transitions
leading to the weight distributions (24) involve creation of both a c pseudoparticle hole and
a s pseudoparticle hole. Note also that the dependence on n and U/t of the exponent (25)
occurs through the parameter Kρ only, as mentioned in the previous section. For m = 0 this is
a general property of the critical exponents that control the weight distribution in the vicinity
of the upper-Hubbard band lower limit. In contrast, the expressions of the exponents that
control the weight distribution in the vicinity of the branch lines studied in [10] involve the
momentum-dependent phase shifts defined in [8].

The exponent (25) is a function of U/t which, for electronic densities n such that
0 < n < 1, changes from ζ

|l|
1p → (l2 − 5)/4 = −1, 1, 5 for l = ±1,±3,±5, respectively,

as U/t → 0 to ζ |l|
1p → (l2 − 8)/8 = −7/8, 1/8, 17/8 for l = ±1,±3,±5, respectively, as

U/t → ∞. Note that as the critical exponent (25) approaches −1 for l = ±1 as U/t → 0
the spectral function behaves as given in equation (20). The exponents (25) are plotted in
figures 2(a) and (b) for k = π ∓ kF and π ∓ 3kF, respectively, as a function of the electronic
density n and for different values of U/t . The l = ±5 exponent is not plotted in the figure.
This exponent is larger than 2 and corresponds to regions of very little spectral weight. The
exponents plotted in figure 2 are monotonic functions of n. The exponent ζ 1

1p is always negative
and such that −1 � ζ 1

1p � −7/8 and is associated with a weight-distribution singularity. It
increases for increasing values of U/t . For finite values of U/t it is a function of the electronic
density n with a minimum for an intermediate value of n. The exponent ζ 3

1p is always positive
and such that 1/8 � ζ 3

1p � 1 and is associated with a weight-distribution edge. The exponent
ζ 3

1p decreases for increasing values of U/t . For finite values of U/t it is a function of the
electronic density n with a maximum for an intermediate value of n.

For all values of U/t there is more spectral weight around the lower-limit upper-
Hubbard band points located at (k = π ∓ kF, ω = Eu) than around the points located at
(k = π ∓ 3kF, ω = Eu). Moreover, the amount of weight in the vicinity of the points
located at (k = π ∓ 3kF, ω = Eu) is larger than that of the weight located in the vicinity
of the points (k = π ∓ 5kF, ω = Eu). For U/t → 0 the spectral weight located in the
vicinity of the points (k = π ∓ 3kF, ω = Eu) and (k = π ∓ 5kF, ω = Eu) disappears.
As mentioned above, the value of the critical exponent plotted in figure 2(a) is −1 for
U/t → 0. Thus, in this limit the spectral function behaves as given in expression equation (20).
Importantly, in that limit the energy Eu of the upper-Hubbard band lower limit equals the
non-interacting electronic spectrum at (k = π ∓ kF, ω = Eu). It follows that our general
U/t weight distribution leads to the correct non-interacting spectrum in the U/t → 0
limit. In this paper we study the weight distribution in the vicinity of points located in the
lower limit of the Hubbard bands. The branch-line studies of [10] reveal that the lower-
Hubbard band and upper-Hubbard band spectral weights become connected at k = π − kF

as U/t → 0. For finite values of U/t , the finite-weight regions of these two bands are
separated by a region out of the range of dominant processes. This is confirmed by analysis
of figure 1.

Our above finite-energy expressions were derived for the metallic phase corresponding to
electronic densities 0 < n < 1. In the limit n → 1 and finite values of U/t expressions (25)
lead to the correct n = 1 results. In that limit and for m → 0 the upper-Hubbard band lower-
limit points (k = π∓kF, ω = Eu) coincide with the lower-limit points (k = π∓3kF, ω = Eu)
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Figure 2. The upper-Hubbard band one-electron exponents (a) ζ 1
1p and (b) ζ 3

1p given in equation (25)
as a function of the electronic density n for U = 1.5t , 4t , 10t and U → ∞ (horizontal lines).

and (k = π ∓ 5kF, ω = Eu). Thus, in this case the smallest of the three exponents (25), such
that l = 1, controls the leading-order weight-distribution term (24).

In the limit n → 1 the equality of the exponent that controls the electron removal lower-
Hubbard band and the l = ±1 finite-energy electron addition exponent (25) is required by
particle–hole symmetry. Our results reveal that in the metallic phase the l = ±1, ±3 and ±5
finite-energy exponents (25) also equal the exponents that control the weight distribution in
the vicinity of the three zero-energy points located at (k = ±kF, ω = 0), (k = ±3kF, ω = 0)
and (k = ±5kF, ω = 0), respectively. (The points (k = kF, ω = 0), (k = 3kF, ω = 0) and
(k = 5kF, ω = 0) are shown in figure 1.) For l = ±1 the exponent expression (25) was already
found in [20]. It corresponds to the H → 0 expressions of the one spin-up and spin-down
electron exponents given in table I of that reference, where H is the magnetic field.

There are not many previous results about the excitation energy and momentum
dependence of the weight distribution in the vicinity of the UHB lower-limit points considered
above. Conformal-field theory does not apply to finite energy. The method used in [12] refers
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to U/t → ∞ where the UHB lower limit corresponds to ω = Eu = ∞. Thus, the UHB was
not considered in the finite-energy studies of that reference. The point (k = π − kF, ω = Eu)
corresponds to (k = π/2, (ω − µ)/t ≈ 0.5) and (k = 7π/12 ≈ 0.58π, (ω − µ)/t ≈ 1) in
figures 3 and 4 of [13], respectively. The spectral weight of figure 3 is for half-filling and
U/t = 4. (The figure zero-energy is the middle of the Mott–Hubbard gap.) The weight
of figure 4 is for electronic density n = 5/6 and U/t = 4. These weight distributions
were obtained by numerical calculations based on a combination of exact diagonalizations
of finite clusters with strong-coupling perturbation theory and are consistent with our results.
Unfortunately, a quantitative comparison is not possible because the method used in [13] does
not provide accurate information about the weight-distribution dependence on the excitation
energy and momentum.

4.4. The dynamical structure factor upper-Hubbard band weight distribution

According to equation (12) and equations (51) and (52) of [7] with	Ls,−1/2 = 0 and	Nsν = 0
for ν > 1, for Mc,−1/2 = M = 1 types of transitions one has in this case that 	Nc = −2,
	Ns = −1 and 	Js = 0. These transitions generate spectral weight in the vicinity of
two upper-Hubbard band lower-limit points. There are two one-−1/2 Yang holon types of
transitions and two one-q = ±q0

c1 = ±[π − 2kF] c1 pseudoparticle types of transitions which
contribute to these weight distributions. The former two types of transitions correspond to
Lc,−1/2 = 1 and 	Jc = ±1/2. The latter two types correspond to Nc1 = 1, 	Jc = 0 and
Jc1 = ∓1/2. The weight distribution in the vicinity of the two upper-Hubbard band lower-limit
points located at (k = π ∓ 2kF, ω = Eu) results from transitions belonging to these two types.
Use of the general expression (17) leads in the limit m → 0 to the following expression for the
dynamical structure factor for excitation energy ω such that (ω− Eu) is small and momentum
values k = π ∓ 2kF:

Im χρ(π ∓ 2kF, ω) ∝ (ω − Eu)
ζρ . (26)

From the use of equation (19), we find the following expression for the critical exponent ζρ in
the limit m → 0:

ζρ = −2
[
1 − [√

2Kρ/2
]2 − [

1/
√

2Kρ

]2]
. (27)

The exponent (27) is plotted in figure 3 as a function of the electronic density n for different
values of U/t . This exponent is a function of U/t which, for electronic densities n such that
0 < n < 1 and spin density m = 0, changes from ζρ → 0 as U/t → 0 to ζρ → 1/2 as
U/t → ∞. For the n = 1 Mott–Hubbard insulator phase the exponent is 1/2 for all finite
values of U/t . The exponent ζρ is always positive and such that 0 � ζρ � 1/2 and is associated
with a weight-distribution edge. It increases for increasing values of U/t . For finite values of
U/t it is a function of the electronic density n with a minimum for an intermediate value of n.

In contrast to the above one-electron problem, the spectral weight associated with the
dynamical structure factor upper-Hubbard band vanishes in the limit U/t → ∞. For the
n = 1 Mott–Hubbard transition, the whole dynamical structure factor vanishes as U/t → ∞.
This behaviour is related to the vanishing of the kinetic energy as U/t → ∞ [21]. The
dynamical structure factor upper-Hubbard band exponent (27) had not been studied until now.
It controls an onset of spectral weight whose ω derivative is infinite at the lower limit of the
upper-Hubbard band ω = Eu and raises upwards according to the power law (26).

In general the momentum values k = π ∓ 2kF are finite and thus in the metallic phase
the weight distribution (26) is not related to the zero-momentum frequency-dependent optical
conductivity. However, in the limit n → 1 these momentum values vanish. Thus, for the
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Figure 3. The exponents ζρ = ζ 1
ss (27) that control the weight distribution of the upper-Hubbard

band dynamical structure factor and second upper-Hubbard band singlet Cooper-pair spectral
function, respectively, as a function of the electronic density n for U = 1.5t , 4t , 10t and U → ∞.

particular case of the Mott–Hubbard insulator one can use the following relation between
Im χρ(k, ω) and the regular part of the frequency-dependent optical conductivity σ reg(ω):

Re σ reg(ω) ∝ lim
k→0

ω Im χρ(k, ω)

k2
, (28)

to find the Re σ reg(ω)weight distribution in the vicinity of the upper-Hubbard band lower-limit
point located at (k = 0, ω = Eu = EMH). Use of this relation reveals that the exponent (27)
controls the frequency dependence of that weight distribution. Combination of equations (26)
and (28) for n → 1 and Eu → EMH leads to

Re σ reg(ω) ∝ (ω − EMH)
1/2. (29)

This expression applies to all finite values of U/t .
In contrast to the upper-Hubbard band dynamical structure factor expression (26)

which refers to k = π ∓ 2kF and values of ω such that (ω − Eu) is small, the frequency
dependence (29) of the k = 0 optical conductivity in the vicinity of the upper-Hubbard
band lower-limit point was studied by other methods [14, 15]. In [14] that zero-momentum
conductivity edge was studied for the metallic phase, whose critical exponent is different
from the exponent (27). However, in the limit n → 1 the zero-momentum density-dependent
exponent found in such a reference provides the correct half-filling exponent. In spite of the
different method used in the evaluation of that exponent, the half-filling expression derived
in [14] coincides with that of equation (29). Moreover, the same optical conductivity edge
was studied in [15] for both small and large values of U/t . These investigations also lead to
the same critical exponent 1/2 for both these limits, in agreement with expression (29) which
is valid for all finite values of U/t . As the conductivity exponent −1/2 is characteristic of a
finite-energy semiconductor edge, the conductivity exponent 1/2 is also now believed to be a
universal signature of the Mott–Hubbard insulator [14, 15].
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4.5. Spin-singlet Cooper-pair first and second upper-Hubbard band weight distributions

The energy Eu becomes small for low values of U/t and electronic densities n in the vicinity
of 1. Thus, it is interesting to clarify whether there are singular spectral features in the Cooper-
pair spectral function at the upper-Hubbard band lower limit. Indeed, for the above values of
U/t and electronic density such singular features could lead to a superconductivity instability
for a system of weakly coupled Hubbard chains. Unfortunately, the only singular feature found
below is a δ function peak located at the point (k = π,ω = Eu). That isolated peak results
from the η-pairing mechanism [17]. As the electronic density n approaches 1 the weight of
that peak vanishes as (1 − n). While this spectral structure cannot lead to a superconductivity
instability for the coupled-chain system, other singular features for excitation energy above
the first upper-Hubbard band lower limit could exist, as further discussed in section 5.

According to equations (12) and equations (51) and (52) of [7] with 	Ls,−1/2 = 0 and
	Nsν = 0 for ν > 1, in the case of the Mc,−1/2 = M = 1 type of transitions there is for the
spin-singlet Cooper-pair spectral function a one-−1/2 Yang holon type of transition and three
one-q = ±q0

c1 = ±[π − 2kF] c1 pseudoparticle types of transitions. However, we find that
the one-q = ±q0

c1 = ±[π − 2kF] c1 pseudoparticle transition whose excitation momentum
and energy is the same as the momentum and energy of the one-−1/2 Yang holon type of
transition does not contribute to the singlet Cooper-pair spectral function. Thus, only the one-
−1/2 Yang holon type of transition and two of the three one-q = ±q0

c1 = ±[π − 2kF] c1
pseudoparticle types of transitions contribute to weight-distribution features. We find that
the weight-distribution feature generated by the one-−1/2 Yang holon transition is a single
δ peak located in the first upper-Hubbard band lower limit at k = π and ω = Eu . The
matrix element between the corresponding c1 pseudoparticle excited state with the same
momentum k = π and excitation energy ω = Eu and the ground state vanishes in this
case. Therefore, this singlet Cooper-pair spectral function feature results from the one-−1/2
Yang holon excited state only. There are also two first upper-Hubbard band lower-limit points
located at (k = π ∓ 4kF, ω = Eu) which are generated by one-q = ±q0

c1 = ±[π − 2kF] c1
pseudoparticle transitions. Below we also study the weight distribution in the vicinity of these
first Hubbard band lower-limit points.

For the one-−1/2 Yang holon transition we find that 	Nc = 	Ns = 	Jc = 	Js = 0.
Thus, this is an example of a transition where the quantity (19) is ζss = −2 and is not a critical
exponent. Instead, the correlation function at that point of the (k, ω)-plane is of the form given
in equation (20) for all values of U/t and is

χss(π, ω) = Cρ

ω − Eu − iβ
, (30)

where β → 0 and Cρ � 0 is a constant. It follows that the associated singlet Cooper-pair
spectral-function weight distribution is indeed of the type given in equation (20) and is

Im χss(π, ω) = πCρδ(ω − Eu). (31)

The weight feature (31) can be obtained by direct evaluation of the matrix elements on the
right-hand side of expression (21) for ϑ = ss. That procedure confirms in this particular case
the validity of the results obtained by our method. Moreover, direct calculation of the matrix
elements reveals that for k = π the expressions (30) and (31) do not refer to values of ω such
that (ω − Eu) is small only, but to all values of excitation energy ω. Direct evaluation of the
matrix elements also reveals that the constant Cρ of equations (30) and (31) is Cρ = [Na − N]
and vanishes for the Mott–Hubbard insulator.

In order to evaluate the matrix elements of expression (21) for ϑ = ss and in the particular
case of the momentum value k = π , we note that the off-diagonal generator Ŝc

+ of the η-spin
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SU(2) algebra given in equation (9) of [6] can be rewritten as follows:

Ŝc
+ =

∑
k′

c†
k′ ,↓c†

π−k′,↑. (32)

Application of that generator onto a ground state produces an excited state with a −1/2 Yang
holon. The generator of the above transition corresponds to creation of that −1/2 Yang holon
and involves the initial ground state and this single final excited state only. After normalization
this excited state can be written as follows:

|Lc,−1/2 = 1〉 =
∑

k′ c†
k′,↓c†

π−k′,↑√
Na − N

|GS〉. (33)

The main point is that at k = π the singlet superconductivity operator given in
equation (22) is

Ôss(π) = Ŝc
+ =

∑
k′

c†
k′,↓c†

π−k′ ,↑. (34)

Use of equation (34) in (21) reveals that for k = π the correlation function expression results
from the overlap of the ground state with the excited state (33) only. Thus, for k = π only
one matrix element between the ground state and the available excited states of momentum
k = π is finite. That matrix element corresponds to the state (33). It follows that for k = π the
singlet superconductivity correlation function and corresponding spectral function are indeed
given by expressions (30) and (31) with Cρ = [Na − N] for all values of ω.

The one-−1/2 Yang holon state (33) is associated with the η-pairing mechanism [17].
That mechanism leads in the metallic phase to the δ-function peak (31) in the singlet Cooper-
pair spectral function. Such a state possesses off-diagonal long-range order [17]. The
corresponding δ peak is located at finite excitation energy. The δ peak (31) is absent in the case
of the Mott–Hubbard insulator where Cρ = [Na − N] → 0. This vanishing is required by a
half-filling selection rule, since the ground-state η spin value of the Mott–Hubbard insulator is
Sc = 0. Note that the present transition is a mere rotation in η-spin space which conserves Sc

and leads to 	Sc = 0 and	Sz
c = +1. Thus only for initial ground states such that Sc � 1 can

this transition occur. This excludes both the Mott–Hubbard insulator ground state, such that
Sc = 0, and the one-hole doped Mott–Hubbard insulator ground state, such that Sc = 1/2.

Next, we consider the weight distribution in the vicinity of the first upper-Hubbard band
lower-limit points generated by other Mc,−1/2 = M = 1 types of transitions. These transitions
correspond to a region of little spectral weight and are such that Nc1 = 1, 	Jc = ±1/2,
Jc1 = ∓1/2 and 	Nc = 	Ns = 	Js = 0. Use of the general expression (17) leads in the
limit m → 0 to the following expression for the spin singlet Cooper-pair spectral function for
momentum values k = π ∓ 4kF and excitation energy ω such that (ω − Eu) is small:

Im χss(π ∓ 4kF, ω) ∝ (ω − Eu)
ζss . (35)

This weight-distribution edge does not occur for the Mott–Hubbard insulator. From use of
equation (19) we find the following expression for the critical exponent ζss in the limit m → 0:

ζss = −2
[
1 − [√

2Kρ

]2]
. (36)

This exponent is a function of U/t which for all electronic densities changes from ζss → 2 as
U/t → 0 to ζss → 0 as U/t → ∞. Such a dependence on U/t is continuous. (Since there
is not much spectral weight in the vicinity of this edge feature, we do not plot the positive
exponent (36).)

We close our study by considering the weight distribution in the vicinity of the Mc,−1/2 =
M = 2 second upper-Hubbard band lower-limit points located at an excitation energyω= 2Eu .
We note that for the Mott–Hubbard insulator there is no first upper-Hubbard band. In this case
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there is an energy gap which equals twice the Mott–Hubbard gap and separates the singlet
Cooper-pair removal and addition spectral functions. The latter function corresponds to the
present second upper-Hubbard band in the limit n → 1.

The Mc,−1/2 = M = 2 types of transitions are such that 	Nc = −2, 	Ns = −1 and
	Js = 0. Interestingly, there are five different types of transitions which contribute to the
same weight distribution in the vicinity of two points and lead to the same critical exponent.
These five types of transitions are such that (a) Lc,−1/2 = 2 and	Jc = ±1/2, (b) Lc,−1/2 = 1,
Nc1 = 1, 	Jc = 0, Jc1 = ±1/2, (c) Nc1 = 2, 	Jc = ±1/2, Jc1 = 0, (d) Nc1 = 2,
	Jc = ±1/2, Jc1 = ±1 and (e) Nc,2 = 1,	Jc = 0, Jc1 = ±1/2. All transitions of these types
contribute to the weight distribution around the two second upper-Hubbard band lower-limit
points located at (k = ±2kF, ω = 2Eu). In addition, there is a sixth type of transition which
leads to two second upper-Hubbard band lower-limit points located at (k = ±6kF, ω = 2Eu).
This type of transition is such that Nc1 = 2, 	Jc = ±1/2 and Jc1 = ∓1/2. There is nearly
no spectral weight in the vicinity of these two latter points.

Use of the general expression (17) leads in the limit m → 0 to the following expression
for the spin singlet Cooper-pair spectral function for excitation energy ω such that (ω− 2Eu)

is small and momentum values k = kl
2 = l2kF where l = ±1,±3:

Im χss(l2kF, ω) ∝ (ω − 2Eu)
ζ

|l|
ss ; l = ±1,±3. (37)

From the use of equation (19), we find the following expression for the critical exponent ζ |l|
ss

in the limit m → 0:

ζ |l|
ss = −2

[
1 − [

l
√

2Kρ/2
]2 − [

1/
√

2Kρ

]2]; l = ±1,±3. (38)

Note that for l = ±1 this exponent equals the dynamical structure factor exponent ζρ given
in equation (27). Thus, it changes from ζ 1

ss → 0 as U/t → 0 to ζ 1
ss → 1/2 as U/t → ∞.

It is plotted in figure 3 as a function of the electronic density n for different values of U/t .
On the other hand, the exponent ζ 3

ss is much larger and changes from ζ 3
ss → 8 as U/t → 0

to ζ 1
ss → 9/2 as U/t → ∞. This exponent corresponds to a region of very little spectral

weight. In the limit n → 1 the four second upper-Hubbard lower-limit points located at
(k = ±2kF, ω = 2Eu) and (k = ±6kF, ω = 2Eu) become the same single point. Thus, in this
case the smaller exponent ζ 1

ss corresponds to the dominant contribution and controls the weight
distribution in the vicinity of the lower-limit point located at (k = π,ω = 2Eu = 2EMH).
For the n = 1 Mott–Hubbard insulator phase the exponent ζ 1

ss is 1/2 for all finite values of
U/t . It equals the exponent which controls the weight distribution around the zero-energy
point located at (k = π,ω = 0). Interestingly, comparison with the results of [20] reveals
that in the metallic phase the exponents (38) for l = ±1 and ±3 also equal the corresponding
exponent that controls the low-energy weight distribution of the singlet Cooper-pair removal
spectral function in the vicinity of the zero-energy points located at (k = ±2kF, ω = 0) and
(k = ±6kF, ω = 0), respectively. However, in the metallic phase there is more spectral weight
in the vicinity of the latter zero-energy points than in the vicinity of the corresponding second
upper-Hubbard band lower-limit points.

Finally, we note that if one extends the present study to finite-energy excited states with
finite occupancies of −1/2 HL spinons and/or sν pseudoparticles belonging to ν > 1 branches,
similar features are obtained for gapped spin excitations. For instance, in the case of the spin-
down triplet superconductivity spectral function a δ-function peak similar to (31) is obtained
at k = π and ω = Eu + µ0 H . This peak is generated by a transition from the ground state to
a single finite-energy excited state with one −1/2 Yang holon and one −1/2 HL spinon.
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5. Concluding remarks

In this paper we derived general few-electron spectral function expressions for the 1D Hubbard
model in the vicinity of the lower limit of the upper-Hubbard bands. For the one-electron
addition and dynamical structure factor we studied the weight distribution in the vicinity of
the lower limit of the first upper-Hubbard band. In the case of the singlet Cooper-pair spectral
function we considered the same problem in the vicinity of the lower limits of both the first
and second upper bands. The weight of these Hubbard bands is generated by dominant holon
and spinon processes which amount to more than 99% of the spectral weight [16]. Our general
expressions were obtained by a combination of symmetries of the 1D Hubbard model, such
as the holon and spinon number conservation laws, with the finite-energy holon and spinon
description of the quantum problem recently introduced in [6, 8].

The results obtained in this paper provide physically interesting and useful information
about the finite-energy spectral properties of the present many-electron 1D quantum liquid
and are complementary to the branch line studies of [9, 10, 16]. In the case of the one-
electron problem the combination of our results with those of [10] provides all finite-energy
spectral-weight singularities. Since the singular spectral features observed in quasi-1D metals
agree quantitatively with the model singular branch lines, our results are of interest for
the further understanding of the unusual spectral properties observed in low-dimensional
materials [2, 4, 5, 9, 10]. Moreover, from the finite-energy weight distribution found for
the dynamical structure factor, we checked that, in the limit of half-filling, our results lead for
all finite values of U/t to the expected Mott–Hubbard insulator exponent 1/2 for the onset
of the finite-frequency optical conductivity absorption. Unfortunately, we found no singular
features at the upper-Hubbard band lower limit of the spin-singlet Cooper-pair spectral function
other than the expected η-pairing δ-function peak. However, it could be that there are branch
lines just above such a lower limit which show singular spectral features. Since the energy
width of the first Hubbard band is small for low values of U/t and electronic densities n in the
vicinity of 1, such singular features could lead to an instability for a system of weakly coupled
Hubbard chains. We thus suggest that this problem is further studied by the branch-line method
used in [10] for the one-electron problem.
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Appendix A. The finite-size energy spectrum quantities

In this appendix we show that the functional 2	ι
α has the form given in equation (15) and discuss

issues related to the vanishing of the cν finite-size energy spectrum for q ±q0
cν = ±[π−2kF ].

By direct use of the results of [8], we find that for the excited states that span the reduced
J-CPHS ensemble subspaces Hred the functional (14) can be written as

2	ι
α =

[
ι

∑
α′=c,s

ξ0
α,α′

	Nα′

2
+ ι

∞∑
ν=1

ξ0
α,cν

Ncν

2
+

∑
α′=c,s

ξ1
α,α′	Jα′ −

∞∑
ν=1

ξ1
α,cν Jcν

]2

. (A.1)

Here the parameters ξ j
α,α′ and ξ j

α,cν can be expressed in terms of the two-pseudofermion phase
shifts defined in [8] as follows:
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ξ
j
α,α′ = δα,α′ +

∑
l=±1

(l j)�α,α′ (q0
Fα, lq

0
Fα′ )

ξ j
α,cν =

∑
l=±1

(l j )�α,cν(q
0
Fα, l[π − 2kF]).

(A.2)

In the limit m → 0 these parameters are ξ0
c,c = 1/

√
2Kρ , ξ0

c,s = 0, ξ0
s,c = −1/

√
2, ξ0

s,s = √
2,

ξ0
c,cν = 0, ξ0

s,cν = 0, ξ1
c,c = √

2Kρ , ξ1
c,s = √

Kρ/2, ξ1
s,c = 0, ξ1

s,s = 1/
√

2, ξ1
c,cν = √

2Kρ and
ξ1

s,cν = 0. Here Kρ is the parameter defined in [22] which is such that Kρ → 1 as U/t → 0
and Kρ → 1/2 as U/t → ∞.

The creation of −1/2 Yang holons does not lead to any contribution to the value of the
functional (A.1). However, the creation of cν pseudoparticles leads to contributions through
the terms ι

∑∞
ν=1 ξ

0
α,cνNcν/2 and − ∑∞

ν=1 ξ
1
α,cν Jcν of that functional. On the other hand, the

symmetry discussed in the text below equation (15) requires that the values of the phase-shift
parameters ξ j

α,cν of equation (A.2) are such that the functional (A.1) simplifies to (15). Indeed,
by manipulation of the integral equations of [8] that define the two-pseudofermion phase shifts,
we find the following relation between the parameters ξ j

α,cν and ξ1
α,c defined in equation (A.2):

ξ j
α,cν = jξ1

α,c; α = c, s; ν = 1, 2, 3, . . . ; j = 0, 1. (A.3)

Use of this relation in equation (A.1) leads to (15).
Moreover, the same symmetry is behind the vanishing of the finite-size energy

contributions of the ±q0
cν = ±[π − 2kF] cν pseudoparticles. Indeed, by careful analysis

of the general energy spectrum	EGL we find that these contributions vanish provided that the
quantity

2	ι
cν =

[
Na

2π

(
ι	q0

cν +
Qcν(ιq0

cν)

Na

)]2

; ν = 1, 2, . . . ; ι = ±1, (A.4)

also vanishes. Here Qcν(q) is the functional defined by equation (73) of [8]. Use of the equality
Qcν(ιq0

cν)/Na = −ι	q0
cν given in equation (126) of the same reference in expression (A.4)

confirms that 2	ι
cν vanishes for the excited states that span the reduced subspace.

These properties apply only to cν pseudoparticles such that q → ±[π − 2kF]. Indeed,
these quantum objects become non-interacting and localized in that limit. This behaviour is
related to the fact that the −1/2 Yang holon is also non-interacting and invariant under the
electron–rotated-electron unitary transformation [7]. However, in general a cν pseudoparticle
is different from the rotated cν pseudoparticle. The only exception is precisely for bare
momentum values q such that q → ±q0

cν = ±[π − 2kF]. The cν pseudoparticles become
non-interacting in that limit only. Indeed, the energy associated with the creation of a −1/2
Yang holon is given by Eu . A cν pseudoparticle is a composite quantum object of ν − 1/2
holons and ν + 1/2 holons. Creation of a +1/2 holon is a process which requires no energy.
The amount of energy required for creation of a cν pseudoparticle is νEu + ε0

cν(q). Thus,
the energy per −1/2 holon is Eu + ε0

cν(q)/ν �= Eu . However, one has that ε0
cν → 0 as

q → ±q0
cν = ±[π − 2kF] and thus in this limit the energy per −1/2 holon becomes Eu and

equals that of a non-interacting −1/2 Yang holon.

Appendix B. The finite-energy correlation function

Here we show that the asymptotic expansion of the correlation function 〈GS|φ̂ϑ (x, t)φ̂ϑ(0, 0)
|GS〉 is of the form given in equation (16). The operator φ̂GL

ϑ (x, t) acts and is defined in
a reduced J-CPHS ensemble subspace associated with small values of the excitation energy
	EGL = (ω−ωHS) and excitation momentum	PGL = (k−kl

M). In the Heisenberg description
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and in that reduced Hilbert subspace the space coordinate x and time t dependent physical
field φ̂GL

ϑ (x, t) can be expressed relative to its x = 0 and t = 0 expression φ̂ϑ(0, 0) as

φ̂GL
ϑ (x, t) = e−i[:ĤGL:t−: P̂GL:x]φ̂ϑ(0, 0)ei[:ĤGL:t−: P̂GL:x]. (B.1)

For the Hamiltonian :ĤGL: of equation (6) the low-energy energy spectrum (13) and momentum
spectrum 	PGL = 2π

Na

∑
α=c,s

∑
ι=±1 ι[	

ι
α + Nph

α,ι] are conformal invariant and correspond to
a two-component conformal-field theory associated with the c and s pseudoparticle excitation
branches [19, 20]. The effect of the cν pseudoparticles is merely to shift the c pseudoparticle
current number deviations	Jc by −∑∞

ν=1 Jcν . Fortunately, such an effect does not affect the
conformal invariance of the low-energy energy spectrum and momentum spectrum. Thus, the
asymptotic expression for the low-energy correlation function of the physical field φ̂GL

ϑ (x, t)
is for electronic and spin densities such that 0 < n < 1 and 0 < m < n, respectively, of the
following general form [19, 20]:

〈GS|φ̂GL
ϑ (x, t)φ̂GL

ϑ (0, 0)|GS〉 ∝
∏
α=c,s

∏
ι=±1

1

(x − ιvαt)2	ι
α

. (B.2)

We recall that the 1D Hubbard model :Ĥ : and Hamiltonian :ĤGL: of equation (6) refer to
the same ground state. Thus, the field φ̂ϑ(x, t) is such that

φ̂ϑ (x, t) = e−i[:Ĥ :t−: P̂:x]φ̂ϑ (0, 0)ei[:Ĥ :t−: P̂:x], (B.3)

where :P̂ : is the momentum operator of equation (8). Since the Hamiltonians :Ĥ : and :ĤGL: of
equation (6) have the same energy eigenstates, there is a one-to-one correspondence between
the correlation function terms (B.2) of the Hamiltonian :ĤGL: and those of the 1D Hubbard
model :Ĥ :. Transitions to different reduced subspaces Hred lead to different correlation-
function terms. Moreover, transitions to reduced subspaces with different values for M Eu

and kl
M lead for the 1D Hubbard model to correlation-function contributions with different

values of the excitation energy ω ≈ M Eu and momentum k ≈ kl
M . Thus, our first choice is

the energy value M Eu and momentum value kl
M which our correlation-function asymptotic

term refers to. If for the same values of M Eu and kl
M there are several reduced subspaces,

we choose that associated with the leading-order asymptotic correlation-function term for the
Hamiltonian :ĤGL: of equation (6). That leading-order term is of the form (B.2). Let |ψ( j)〉
with j = 1, 2, . . . denote the excited states that span the chosen reduced Hilbert subspace
Hred. Based on the commutation relations of the three normal-ordered Hamiltonians related
by equation (6) and three normal-ordered momentum operators involved in equation (8) we
find that

φ̂ϑ (x, t) = e−i[(ĤHS+:ĤGL:)t−(P̂0+:P̂GL:)x]φ̂ϑ (0, 0)ei[(ĤHS+:ĤGL:)t−(P̂0+:P̂GL:)x]

= e−i[ĤHSt−P̂0 x]e−i[:ĤGL:t−: P̂GL:x]φ̂ϑ (0, 0)ei[ĤGLt−P̂GL x]ei[ĤHSt−P̂0 x]

= e−i[ĤHSt−P̂0 x]φ̂GL
ϑ (x, t)ei[ĤHSt−P̂0 x], (B.4)

where we have used equations (B.1) and (B.3). Equation (B.4) confirms that φ̂ϑ(0, 0) =
φ̂GL
ϑ (0, 0).

Once the ground state has eigenvalue zero both for ĤHS and P̂0 and all excited states
that span the subspace Hred have for these operators the same eigenvalues M Eu and kl

M ,
respectively, we find that

〈GS|φ̂ϑ(x, t)φ̂ϑ (0, 0)|GS〉 = 〈GS|e−i[ĤHSt−P̂0 x]φ̂GL
ϑ (x, t)ei[ĤHSt−P̂0 x]φ̂GL

ϑ (0, 0)|GS〉
=

∑
j

〈GS|φ̂GL
ϑ (x, t)ei[ĤHSt−P̂0 x]|ψ( j)〉〈ψ( j)|φ̂GL

ϑ (0, 0)|GS〉

= ei[M Eu t−kl
M x]〈GS|φ̂GL

ϑ (x, t)φ̂GL
ϑ (0, 0)|GS〉. (B.5)
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Here the j summation refers to the above set of excited states {|ψ( j)〉} which span the suitable
reduced subspace Hred. Finally, the combination of equations (B.2) and (B.5) implies that the
leading term in the asymptotic expansion of the correlation function of the 1D Hubbard model
is of the form given in equation (16).
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[9] Sing M, Schwingenschlögl U, Claessen R, Blaha P, Carmelo J M P, Martelo L M, Sacramento P D, Dressel M and

Jacobsen C S 2003 Phys. Rev. B 68 125111
[10] Carmelo J M P, Penc K, Martelo L M, Sacramento P D, Lopes dos Santos J M B, Claessen R, Sing M and
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